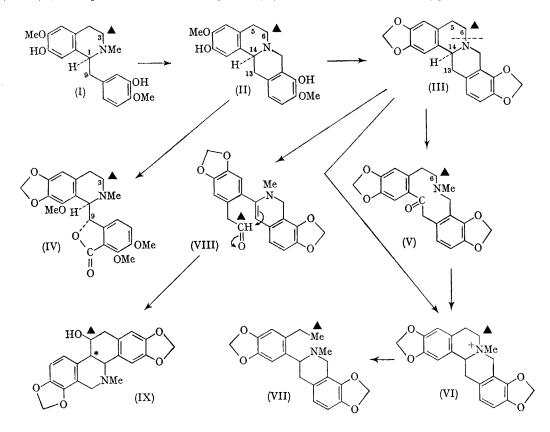
Stereochemical Studies concerning the Biosynthesis of Narcotine, Protopine, and Chelidonine

By A. R. BATTERSBY,* R. J. FRANCIS, M. HIRST, R. SOUTHGATE, and J. STAUNTON (The Robert Robinson Laboratories, University of Liverpool)

Our earlier work with multiply-labelled precursors proved¹ that the opium alkaloid narcotine (IV) is biosynthesised from reticuline (as I) and, importantly, that the carbonyl residue is derived without loss of carbon from the N-methyl group of (I). This supported the view² that phthalideisoquinolines are formed from tetrahydroprotoberberines and scoulerine (as II) was suggested¹ as the precursor. The synthesis³ of (-)-[6-¹⁴C,14-³H]-scoulerine (II) and its enantiomer allowed critical tests in Papaver somniferum plants. Experiment 1 (Table) shows that the (-)-isomer, which corresponds³ to narcotine⁴ in absolute configuration, is incorporated well with some tritium loss whereas the (+)-form is virtually ineffective (Expt. 2). Degradation of the narcotine⁵ proved 97% of its ¹⁴C activity to be located at C-3 (see IV) so demonstrating the protoberberine \rightarrow phthalideisoquinoline conversion. Scoulerine has recently been isolated from opium.6 The oxidative process whereby C-13 of (II)

becomes the lactonic C-9 in narcotine (IV) was studied with (-)-, and (+)- $[3-^{14}C,9-^{3}H_2]$ -reticuline. As expected, the (+)-form (I) was the better precursor (Expts. 3 and 4) and loss of *ca*. 50% of the tritium from C-9 of (I) during its biological conversion into narcotine is in accord with a stereospecific oxidation at C-13 of (-)scoulerine (II) or a close relative.

The biosynthesis of protopine (V) in *Dicentra* plants has been shown⁷ to involve (+)-reticuline (I). That (-)-scoulerine (II) is a further intermediate in *Chelidonium majus* is established by Expts. 1, 2, 7, and 8. The ³H values recorded should be compared with those for stylopine and are in agreement with the conversion (II) \rightarrow (III) \rightarrow (V). The exact mechanism of the second stage requires further study. Again only (-)-scoulerine acted as an effective precursor of stylopine (III) and protopine (V). Conversion of the protopine *via* (VI) into (VII) followed by Kuhn-Roth oxidation gave acetic acid which was


		(\pm) -Stylopine ^d (as III)		Narcotine (IV)		Protopine (V)		Chelidonine (IX)	
Expt.	Dressurger	Tu source a	% ^b Loss or	Ten a server 9	% ^b Loss or	Incom 8	% ^b Loss or	Incom 8	% ^b Loss or
No.	Precursor	Incorp.ª	gain ³ H	Incorp.ª	gain ³ H	Incorp.ª	gain ^s H	Incorp.ª	gain ^s H
1	$(-)-[6-^{14}C, 14-^{3}H]-(II)$	0.28	+10	$2 \cdot 3$	-13	0.92	-100	0.61	-100
2	$(+)-[6-^{14}C, 14-^{3}H]-(II)$	0.013	с	0.02	с	0.04	С	0.014	с
3	(+)-[3- ¹⁴ C,9- ³ H ₂]-(I)	0.53	-4	0.09	46			0.58	-18
4	$(-) - [3^{-14}C, 9^{-3}H_2] - (I)$	0.02	-2	0.03	-55			0.03	-16
5	$(\pm) - [6^{-14}C, 5^{-3}H_2] - (II)$	0.3	+10					$1 \cdot 2$	+23
6	$(\pm) - [6^{-14}C, 6^{-3}H_2] - (II)$	0.2	с					$1 \cdot 2$	-38
7	$(-) - [6^{-14}C, 6^{-3}H_2] - (II)$	0.18	+9			0.72	+9	0.81	-37
8	$(+)-[6-{}^{14}C, 6-{}^{3}H_{2}]-(II)$	0.009	c			0.01	c	0.01	С

TABLE

^a Incorporations are based upon ¹⁴C; comparable feeding conditions were used for each enantiomeric pair. ^b Calculated relative to the ¹⁴C-label; the figures show the % change in ³H: ¹⁴C ratio from that in the precursor.

^c Not examined.

^d Stylopine is present as a partial racemate containing an excess of the (-)-form. The specific activities of the (-)- and (\pm) -forms proved that little labelling of the (+)-form occurred over the feeding period.

▲ indicates ¹⁴C label

degraded by Schmidt's method to methylamine which contained all the original activity. Protopine (V) was thus proved to be labelled specifically at C-6. Stylopine (III) was similarly degraded with the same result. Attention is drawn to the small rise in ${}^{3}\text{H}:{}^{14}\text{C}$ ratio (ca. 10%) for those biological conversions not involving the ${}^{3}\text{H}$ -labelled site e.g., stylopine in Expts. 1 and 7 and protopine in Expt. 7. This effect has been observed in other cases and will be

discussed in our full Paper; it is of importance in the sequel for chelidonine.

The late stages leading to chelidonine (IX) in C. majus were shown in this laboratory⁸ to be $(I) \rightarrow (II) \rightarrow (III) \rightarrow (IX)$ and the intervention of stylopine (III) has been confirmed.⁹ These results are in agreement with earlier suggestions that chelidonine is derived in some way from the tetrahydroprotoberberine skeleton.¹⁰ Support for a mechanism via (VIII) has now been obtained by examining the fate of the hydrogen atoms attached to C-5, -6, -13, and -14 of (-)-stylopine (III) during its biological conversion into chelidonine (IX). (-)-Scoulerine, and in two experiments reticuline (I), labelled with ³H at the positions corresponding to C-5, -6, -13, and -14 of stylopine (III) were used for these studies. For each enantiomeric pair, the substance corresponding in absolute configuration to (-)-stylopine (III) was by far the more effective precursor of chelidonine. Expt. 1 shows that the hydrogen atom at C-14 is lost completely. Expt. 5 indicates that C-5 is not involved in the stylopine \rightarrow chelidonine transformation but C-6 is clearly affected (Expts. 6 and The losses of ³H recorded in the Table are 7). calculated from the ³H/¹⁴C ratio in the original precursor and when account is taken of the general

rise in this ratio along the biosynthetic pathway, ³H-loss from C-6 becomes close to that expected (50%) for a stereospecific oxidation which does not involve an isotope effect. In contrast, Expt. 3 shows that the ³H:¹⁴C ratio in chelidonine is only 18% below that of the precursor proving a small ³H-loss from C-13. Even allowing for the general rise in ^{3}H level, this loss is well below 50% and suggests for C-13 a nonstereospecific removal of hydrogen involving an isotope effect. Complete loss of ³H when chelidonine from Expt. 3 was converted into the methine by Hofmann degradation established specific ³H-labelling at the starred position in the alkaloid (IX) and the illustrated location of the ¹⁴C label was proved as earlier.⁸ Stereospecific generation of a C-14/N doublebond in (III) followed by isomerisation to the C-13/C-14 enamine would explain these results which contrast with those indicating a sterically controlled attack at C-13 (see II) in narcotine biosynthesis.

Scoulerine labelled at C-6 and C-13 with ³H in known absolute configuration is being used in current work to discover the stereochemistry of the oxidative processes.

(Received, May 10th, 1967; Com. 451.)

¹ A. R. Battersby and M. Hirst, Tetrahedron Letters, 1965, 669.

² R. Robinson, "The Structural Relations of Natural Products," Clarendon Press, Oxford, 1955.

³ A. R. Battersby, R. Southgate, J. Staunton, and M. Hirst, J. Chem. Soc. (C), 1966, 1052.
⁴ A. R. Battersby and H. Spencer, Tetrahedron Letters, 1964, 11; J. Chem. Soc., 1965, 1087; M. Ohta, H. Tani, S. Morozumi, S. Kodaira, and S. Kuriyama, Tetrahedron Letters, 1963, 1857; S. Safe and R. Y. Moir, Canad. J. Chem., 1964, **42**, 160.

⁵ A. R. Battersby and D. J. McCaldin, Proc. Chem. Soc., 1962, 365.

⁶ E. Brochmann-Hanssen and B. Nielsen, Tetrahedron Letters, 1966, 2261.

⁷ D. H. R. Barton, R. H. Hesse, and G. W. Kirby, J. Chem. Soc., 1965, 6379.

- ⁸ A. R. Battersby, R. J. Francis, E. A. Ruveda, and J. Staunton, Chem. Comm., 1965, 89.
 ⁹ E. Leete and J. B. Murrill, Phytochemistry, 1967, 6, 231.

10 R. Robinson, J. Roy. Soc. Aris, 1948, 96, 795; R. B. Turner and R. B. Woodward, "The Alkaloids", ed. R. H. F. Manske and H. L. Holmes, Academic Press, New York, 1953, vol. III, p. 54.